小象学院深度学习

课程介绍

本次的深度学习课程主要包括三大部分:

1) 深度学习核心原理。了解深度学习运行的最核心数学原理,从而对后续的知识点扩展,模型设计与优化技能打下基础。

2) 深度学习知识点连接。会涵盖主流的深度学习研究工程应用中碰到的大部分知识点,与大部分学习资料孤立进行知识点介绍不同,会结合主讲人自身总结找到所有知识点之间的联系,便于系统掌握。

3) 介绍不同知识点的代表应用。结合所学的原理以及知识点,介绍比较重要的图像和语言方面的应用,如增强学习,迁移学习,GAN等, 方便学员针对自身兴趣的目标进行强化训练。

课程大纲

第一课 深度学习总体介绍

  1. 神经网络:传统到现代

  2. 深度学习应用特点

  3. 深度学习发展方向

  4. 深度学习框架比较:用Tensorflow进行课程学习

  5. 实例:Tensorflow基础

第二课 传统神经网络

  1. 神经网络起源:线性回归

  2. 从线性到非线性:非线性激励

  3. 神经网络的构建:深度广度复杂度扩展

  4. 神经网络的“配件”:损失函数,学习率,动量,过拟合

  5. 实例: 传统神经网络实现

第三课 卷积神经网络-基础篇

  1. 链式反向梯度传导

  2. 卷积神经网络-卷积层:正向反向推导

  3. 卷积神经网络-功能层:非线性激励,降维,归一化,区域分割,区域融合

  4. 实例:简单卷积神经网络运行

第四课 卷积神经网络-高级篇

  1. AlexNet 最早的现代神经网络

  2. VGG,GoogleNet,,ResNet. 近期的高级网络

  3. Deepface 结构化图像网络

  4. U-Net 深度图片生成网络:逆卷积作用

  5. 实例:利用已有模型进行物体分类/特征提取

第五课 卷积神经网络-目标分类

  1. 目标分类基本框架

  2. 迁移学习

  3. 个人研究分享:如何设计新的的网络

  4. 实例训练:表情识别/人脸识别/动物识别

第六课 卷积神经网络-目标探测

  1. 目标探测介绍

  2. 传统方法总结-DPM

  3. RCNN 系列:RCNN,Fast RCNN,Faster RCNN

  4. YoLo系列

  5. 实例:目标探测模型训练/部署

第七课 递归神经网络

  1. RNN基本原理

  2. 升级版RNN:LSTM

  3. 语言特征提取 Word2Vec

  4. 实例:LSTM用于语句生成

第八课 递归网络卷积网络结合: CNN+RNN

  1. CNN+RNN

  2. 图片标注:学会看图说话

  3. 视频分类:时间信号帮助更多

  4. 图片问答:对话机器人升级版

  5. 实例:图片标注实例

第九课 生成对抗网络:GAN

  1. GAN原理基础

  2. 深度GAN:GAN +深度学习

  3. 条件GAN:生成图片由我控制

  4. info GAN:无监督找特征

  5. Wasserstein GAN:理论创新

  6. 实例:Pix2Pix 自定义图片生成

第十课 增强学习

  1. 增强学习基础

  2. DQN 深度增强学习

  3. DQN 改进模型

  4. A3C 模型:高效游戏机器人

  5. 实例:DQN用于Atari游戏学习

更多教程

教程不断整理更新中,以上截图仅供参考,如需了解更多视频教程的详细信息请到如下地址查看:

教程分类说明https://itvideos.github.io/categories/

获取方式

关于教程、获取方式、温馨提示

坚持原创技术分享,您的支持将鼓励我继续创作!